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3.3: Higher-Order Linear, Homogeneous Equations with Constant Coefficients
Real Roots

Theorem 1. (Distinct Real Roots)
If the roots 11,73, ..., r, of the characteristic equation (2) are real and distinct,

then
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is a general solution to (1).

Exercise 1. Solve the initial value problem
y® +3y" — 10y =0, 5(0)=7,4(0)=0,y"(0) = 70.
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Theorem 2. (Repeated Roots)

If the characteristic equation (2) has a repeated real root r of multiplicity &,
then the part of a general solution of the differential equation (1) corresponding
to r is of the form
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Exercise 2. Find a general solution to the equation

gy(5) _ 6y(4) + y(3) —0.
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